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Introduction: The Magellan data is a In-ensure-trove for scien-

tific analysis of venusian geology, providing far more detail than

was previously available from Pioneer Venus, Venera 15116, or

ground-based radar observations [1]. However, at this point, plan-

etary scientists are being overwhelmed by the sheer quantities of

data collected--data analysis technology has not kept pace with our

ability to collect and store it. In particular, "small-shield" volcanos

0ess than 20 krn in diameter) are the most abundant visible geologic

feature on the planet [2].

It is estimated, based on extrapolating from previous studies and

knowledge of the underlying geologic processes, that there should

be on the order of 10 s to 106 of these volcanos visible in the Magellan

data [3,4]. Identifying and studying these volcanos is fundamental

to a proper understanding of the geologic evolution of Venus.

However, locating and parameterizing them in a manual manner is

very time-consuming. Hence, we have undertaken the development

of techniques to partially automate this task. The goal is not the

unrealistic one of total automation, but rather the development of a

useful tool to aid the project scientists. The primary constraints for

this particular problem are (1) the method must be reasonably robust

and (2) the method must be reasonably fast. Unlike most geological

features, the small volcanos of Venus can be ascribed to a basic

process that produces features with a short list of readily defined

characteristics differing significantly from other surface features on

Venus [2]. For pattern recognition purposes the relevant criteria

include (1) a circular planimetrie outline, (2) known diameter

frequency distribution from preliminary studies, (3) a limited

number of basic morphological shapes, and (4) the common occur-

rence of a single, circular summit pit at the center of the edifice.

Pattern Recognition of Natural Objects: There has been

little prior work on detecting naturally occurring objec ts in remotely

sensed SAR images. Methods such as direct edge detection and

Hough transform approaches deal poorly with the variability and

speckle noise present in typical SAR imagery [5,6,7 ]. One approach

toward detecting small volcanos is to use a template-matching

method whereby a template of the object of interest is compared

with the original target image by scanning the template over the

entire scene. Foran N x N square image and a k x k size template

this operation takes the order ofN 2k :zoperations. If scale-invariance

is sought then typically the procedure is repeated using a range of
template sizes. Wiles and For,shaw [8] have obtained promising

results using this method despite the fact that the Magellan data

contains sigrtificant speckle noise and ambiguity in terms of the

appearance of volcanos in the imagery.

We have pursued an alternative approach motivated by the desire

to develop real-time search methods that could be used as an

interactive software tool by a planetary scientist. The key concept

behind our approach is to carry out the detailed pattern matching at

the lowest image resolution possible and to focus attention only on
relevant parts of the image. Although our work is focused on

developing useful image analysis tools rather than biologically

plausible visual models, it is interesting to note that this general

approach is consistent with high-level models of primate visual

systems [9].

Multiresolution Pattern Recognition: The multiresolufion

paradigm emphasizes the decomposition of an image into a se-

quence of spatial band-pass components [1(3]. In this manner, image

analysis can occur across various spatial frequencies while still

retaining local spatial structure. The basic process is a series of

recursive low-pass Gaussian decompositions of the original image,

which in turn produces a bandpass Laplacian pyramid (the differ-

ence of Gaussians). From a pattern recognition standpoint the key

feature of the method is the ability to analyze the image only at the

coarsest scale necessary. For pattern matching the computational

savings are significant, order of 4k by working at the kth level of

decomposition [11]. Furthermore, provided sufficient detail is

retained for discrimination; by reducing the effective resolution of

the image the input dimensionality to the detector also decreases by

a factor of 4 k. The lower dimensionality makes it much easier to

train an accurate detector. Focus of attention is implemented by

simply "binning" the pixel values of the Laplacian components and

then thresholding. Figure 1 contains an example of this process

(note that a significant number of linear features are automatically

omitted by focusing attention at the appropriate scale).

Volcano Discrimination: The focus of attention mechanism

typically produces about 100 regions ofinteres t (ROIs) per Laplacian

image, roughly half of which contain volcanos and the other half

primarily ridge or graben segments. Each ROI is labeled and a

standard pattern recognition method (a neural network feed-for-

ward classifier using backpropagation) is trained on samples of 5 x

5 windows ofpixel values surrounding the detected bright spots. In

our experiments with Magellan data the multiresolution filtering

and focusing typically reduces the number of pixels that must be

examined to order of 0.5% of those in the original image with a

resultant speed-up in computation at the pattern-matching level.

Using separate test and training images, roughly 70% mean ROI

classification accuracy was attained (up from 50% by simply

guessing).

The concept of having "ground truth" classification labels is

actually incorrect since there are a significant proportion of ROIs

whose labelings are not certain. Hence, by using subjectively

estimated probability vectors of class labels (rather than determin-

istic class-label vectors of 0s and 1s) the mean ROI classification

rate improved to about 82%. This probabilistic training method is

consistent in terms of modeling posterior probabilities and, further-

more, will produce better posterior estimates than using "hard-

decision" class labels given a finite amount of training data [12].

The mean missed detection and false alarm rates were about equal

(roughly 20%)---alrnost all the incorrect decisions were made on

windows where local context was not sufficient for accurate dis-

crimination.
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Fig. 1. Original Magellan SAR data (top), bandpass filtered version of same
(center), and detected regions of interest (at 1/4 resolution) (bottom).

Ongoing Work: We anticipate that a much higher classifica-

tion accuracy can be achieved by incorporating prior knowledge

about the imaging and geologic processes, i.e., noise properties,

surface radar reflectivity, expected volcano diameters, and so forth.

By treating the output activations of the network as estimates of

posterior class probabilities, both data-driven evidence and prior

knowledge can be integrated directly in terms of a coherent prob-

ability model such as a Bayesian network, which incorporates

appropriate conditional independence assumptions. Note that if the

posterior probabilities at a given level are not confident enough (not

close to 0 or I),the Laplacian hierarchycan be descended for a

higher-resolution analysis. Another significant issue is the incorpo-

ration of global context models (spatial correlation of geologic

features) with local evidence. In the context of currently available

image analysis algorithms and tools, these issues somewhat push
the state-of-the-art.

Conclusions: In terms of pattern recognition, even though

100% accuracy will not be achievable due to the inherent ambiguity

in the image data, the general method has significant practical

benefit as a basic tool for aiding rapid scientific exploration of the

large Magellan database. A short-term scientific benefit will be to

answer the basic question regarding the approximate number and
diswibution of these volcanos on the surface of Venus. Long-term

scientific benefits would include subsequent spatial cluster analysis
of the volcano locations and the association of the volcanos with

local structural patterns. It is reasonable to suggest that the applica-

tion of pattern recognition techniques will enable basic scientific

research that otherwise would not be possible by manual methods.
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"COLD" START: A MECHANISM OF THE THIN CRUST
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Recent works [ 1-3] argue that the venusian crust is thin: less than

10-30 krn. However, any convective model of Venus unavoidably

predicts melting and a fast growth of the basaltic crust up to its

maximum thickness about 70 km limited by the gabbro-eclogite

phase transition [4]. The crust is highly buoyant due to both its

composition and temperature and it is problematic to t-rod a mecha-

nism providing its effective recycling and thinning in the absence of

plate tectonics. There are different ways to solve this contradiction

[5,6]. This study suggests that a thin crust can be produced during

the entire evolution of Venus if Venus avoided giant impacts [7].

The absence of giant impacts means that Venus' interiors were

more cold and more water-rich than the Earth's after the accretion

and core formation. The initial temperature distribution after the

core formation is not necessarily convectively unstable: The viscos-

ity is extremely sensitive to the temperature and uncertainties in the

initial thermal state easily cover the transition from conductive to

convective regimes. Convection and conduction-convection transi-

tion are parametcrized for the temperature-, pressure- and stress-


